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Discretized model for diffusion of a chain in one dimension

S. E. Guidontt H. O. Matin,2 and C. M. Aldad
nstitute of Materials Science and Technology (INTEMA), Universidad Nacional de Mar deHEI@®ICET, Juan B. Justo 4302,
7600 Mar del Plata, Argentina
2Physics Department, School of Exact and Natural Sciences, Universidad Nacional de Mar del Plata,
Dean Funes 3350, 7600 Mar del Plata, Argentina
(Received 30 August 2002; published 21 March 2003

With the help of Monte Carlo simulations, the one-dimensional diffusion motion of a chaihb&fads is
studied to determine its diffusion coefficient and viscosity. We found that the end bead movements with respect
to that of the central beads play a key role. There is no memory between bead hops but they become correlated
as a consequence of the chain dynamics. This determines the scaling exponents and the relation connecting
them. In particular, the scaling exponent for the viscosity can be smaller or greater than 3 but it must scale as
N2 in the asymptotic regimeN— ). We analyze in detail the dynamics of a chain with three beads to explain
why the expected relation between diffusivity and viscosity exponents is not satisfied.
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[. INTRODUCTION dent of N, is the mobility of a single bead. The Einstein
relation states that if the system under study obeys a Boltz-
Diffusion mechanisms can be much more complex tharmann distribution, mobility and diffusion are proportional;
those for single-particle diffusion on a frozen potential en-therefore, the one-dimensional diffusion coefficient or tube
ergy landscape. In particular, the presence of interactiondiffusion, Dyye, must be equal t®;/N, whereD, is the
among diffusing particles imparts a collective character tadiffusion coefficient of a single bead. To escape from the
the process that can dramatically affect diffusivity. To date, original tube, the chain must progress a distabgeropor-
variety of mechanisms has been proposed to describe ttfi#®nal toN. The time needed for that is
migration of clusters. They include the sequential displace-

ment of individual particles, the successive shearing of some L2 NL2
compact blocks, dislocation mechanisms, and gliding of the =5 = D—ocN3. (D)
whole cluster1,2]. tube 1

If only single-jump mechanisms are considered, cluster
dynamics results from the sequential motion of individualWhile a reptating chain moves along its tube a lengttin
atoms. For example, self-diffusion of large Ag and Cu clus-space this motion corresponds to a much smaller displace-
ters on the(100) surface takes place by adatom edge diffu-ment because the tube is contoured; it can be shown that
sion and evaporation and condensation of adaf@hsf we Drep=D1/N2. Despite some scatter in the experimentally
restrict ourselves to one dimension, the cluster is reduced timund values, the viscosity is experimentally found to scale
a chain and possible mechanisms for migration are esseasM?3* There have been several explanations for these re-
tially of a single kind. A chain in one dimension can only sults, most of them consisting of modifications of the repta-
move by contracting and stretching in a wormlike fashion.tion theory[7]. Nevertheless, the disagreement between the
This mechanism, called reptation in polymer physics, plays gredictions of theoretical models and experimental results
key role in the dynamics of entangled polymer mé#t§ In  should not be surprising since the dynamics of real entangled
the dynamics of entangled polymers, neighboring chaingolymer melts is still controversial.
constrain a given chain to diffuse only along a confining tube In this paper we discuss in some detail a model we re-
and then the chain executes a one-dimensional random wadently introduced that describes a chain diffusing in one di-
[5,6]. Thus, a chain can progress by leaving part of the initialmension[8]. The dynamics is similar to that found in the
tube and creating a new part as it reptates. The tube modeliginal work of de Genne§5] in which the constraints in
successfully explains many characteristic features experthe dynamics due to other chains are only reflected in the
mentally observed but certain discrepancies between theotyapping of the chain in a certain tube. The chain progresses
and experiment remain controversial. by reptating, leaving some parts of the tube and creating new

Reptation, as originally introduced, predicts that diffusiv- ones as it diffuses. Our model, however, can exhibit a scaling
ity scales with the molecular weight 8™ ¢, wherea=2 in  exponent for the viscositlarger or smallerthan 3. Here we
three dimensions, and the time to escape completely from thehow that the anomalous viscosity scaling is the consequence
initial tube and therefore the zero-shear-rate viscosity scalesf the whole chain dynamics during diffusion in which the
with molecular weight agy,~M?#, with 8=3. These results dynamics of end beads plays a central role. Specifically, we
can be readily derived by resorting to the Einstein relatiorfocus on a chain consisting of three particles. The detailed
[6]. If all beads have the same behavior, the frictional force isanalysis of this simple cluster sheds new light on a problem
proportional to the number of beads in the chah,Then, of enduring interest: the fact that the molecular-weight de-
the mobility « must be equal ta; /N, whereu,, indepen- pendence of the viscosity is different than the original repta-
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can be found in Refd6] and[9]. The Maxwell model is of
use in predicting the response of a polymer during stress
relaxation. In this case, if a constant strain is imposed on the
system, the stress as a function of time behavesoas
=gy exp(—Et/7n). Then, its relaxation time would be/E,
(b) whereE is the Young modulus.
According to the reptation model, after a step strain, the
resulting stress decays as the chain reptates into an unde-
formed configuration. Consider a small change in stiess

(a@)

(c) due to a change in straip
do=G(t)dy=G(t)ydt, 2
- T () whereG(t) is called the relaxation modulus. Integrating this
....... - expression gives

t
—— cr=f G(t—t')ydt’. 3)
(©) .

Thus, the stress is an integral, over all past time, of the re-
laxation modulus times the rate of strain. For a constant
value of the rate of strain, we can write

FIG. 1. Configurations for enf{a),(b)] and middle[(c),(d),(e)]
particles and their possible hops.

tion model prediction. We found that the bead hops are cor- [t (>
related and that this is crucial in the resulting values dor o= Yf G(t—t')dt'= on G(t)dt. (4)
and B. o

The ratioo/y in steady shearing flow is independent)off
Il. MODEL v is vanishingly small. This ratio is known ag,, the zero-

_ o _ _ . shear-rate viscosity. Therefore,
Let us consider a chain in a one-dimensional lattice con-

sisting ofN particles or beads that can hop to the nearest site [~
only if this site is empty. Hops are accomplished by picking o= JO G(t)dt. (5)
a particle at random and attempting to move it. There can be
only one particle per site. Particles can hop to the right or left Let xg(t) be the leftmost propagation position of the right
but no more than one site can be empty between two oénd of the chain and, (t) be the rightmost propagation po-
them. In Fig. 1 hoppings for particles in all possible configu-sition of the left end of the cluster. The zero-shear-rate vis-
rations are shown. In configuratici@ the end particle, if cosity 7, is then calculated by integrating the str¢$6,11]
selected, can only jump to the right and the resulting conwhich is proportional to the number of initially occupied
figuration is that of(b). This jump probability is calleg, . sites, i.e.,
In configuration(b) the end particle can only jump to the left L
and, if selected, the attempted jump succeeds with probabil- B *
ity p, . A particle not at one of the ends—a middle particle— ﬂo—m fo {(Xr(t) =x () +1)dt, 6)
can be in any of the configurations shown in Fi¢c)11(d),
or 1(e). If it is in configuration(c), the particle can jump and whereL is the chain length, the brackets denote the ensemble
after being randomly selected the probability of hopping isaverage, and the integral is evaluated only for positive values
taken to bep.. Particles in configuration&d) and (e) are  of the integrand.
unable to move. Hence,, p,, andp, are the free param- A related model, the repton model, was originally pro-
eters in our model (&p,,pp.Pc=1). posed by Rubinsteifil1]. This model consists dfl random
Thus, the computer model is based on a random walk in avalkers (reptong in one dimension. The reptons move in
one-dimensional lattice dl particles forming a chain with such a way as to not break the connectivity of the cluster. A
the restrictions described above. At tiene particle of the site in the middle of the chain cannot be vacated and the
chain is randomly selected. Then, the probability of jumpingoriginal order of the reptons is preserved. The model con-
is dictated by the rules described for middle and end particletains a parameteg, which is the number of possible gates
and the time is increased kjt=1/N. Every time a particle for an end repton to move to. Then there arel possible
jumps, the center of mass moves\1éf the distancd be-  gates through which to enter into an empty cell and only one
tween adjacent sites of the lattice. In the following we usegate through which to move into an already occupied one.
| =1. The repetition of this procedure simulates the randonAccordingly, the probability of a move that lengthens the
motion of the chain. configuration is g— 1) times the probability of a move in the
A simple way to see that the viscosity is directly related tomiddle of the chain. Rubinstein found that the viscosity
the time needed for the chain to escape from the initial tubecales with the cluster size with exponents greater than 3
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with the exact value depending on the parametdor the
casez= 6, which can be understood to correspond to a three-
dimensional cubic lattice, the exponent takes a value of 3.36,
predicting what is observed in experiments. Although at first
glance the rules of our model look different than those of the
repton model, there is a direct correspondence between both
models regarding diffusion. However, since in the repton
model particles can be at the same site, viscosity does not
present the same behavior. Operatively, the main difference
between both models is the flexibility we adopted regarding
the possible different jump probabilities for particles at the
ends of chains relative to those for the central ones.
The question now is what is the difference in essence
between the de Gennes original reptation model and a reptat- \ /,’4
o/
/

time

ing real polymeric chain. It has been proposed that the basic

difference is that in the de Gennes solution the fluctuations of t=1 if:
the chain length are not considered. De Gennes assumes rep- ‘
tation to be the random walk of a fixed length object with a  FIG. 2. Stress relaxation as a function of time. The striped area
curvilinear diffusion coefficient inversely proportional to its is proportional to viscosity. The rectangle represents the original
molecular weight(see, for example, Ref$4,12,13). In the  tube and the thick lines represent the chain.

repton model and ours this assumption is nhot made because

chains are free to stretch and compress as they diffuse. Indonte Carlo simulations verify these results.

deed, it is possible for one end to move independently of the The extreme case, in which the chain needs to diffuse the
other and the length of the chain can vary. The effect ofongest distance to escape from the tube, occurs when the
length fluctuation was expressed analytically quite simply aghain is deformed in a such a way as to have the center of
a factor[ 1—k/M*?]3 with k being a constanfl2]. This is  mass close to one end. Let us first consider a chain of aver-
not a power law with an exponent of 3.4 but it approximatesage lengthL and fluctuationsAL; x, is the position of the

the viscosity over the range of molecular weights used ircenter of mass and the time at which the chain leaves the
experiments. This explanation fails for our model becauseyriginal tube. Hence, the following relation must be valid:

we found that resulting values for the viscosity exponent can

belarger but also smallethan 3. We also found chains with X (7) —Xp(0)| <2L+2AL<A4L. (10)

the same diffusivity and length fluctuation amplitude that

show viscosities larger or smaller than the value consistentps equation indicates that the distance traveled by the cen-
with the diffusivity exponent. Furthermore, we specifically tor of mass at the moment the chain leaves the tube must
show that fluctuations can increase or decrease Viscosity. gcale at most aN. sincel scales withN. Then. we can write

IIl. THEORETICAL CONSIDERATIONS <[XM(T)—XM(O)]2><16L2~N2 (12)

An empty site in the chain will be called khole The o ) )
average number of holes in a chain can be easily calculatedd it is well known that for a given time=r
as follows. A hole is created or annihilated every time an end
particle jumps away from the chain or toward the chain, ([xm(m)—xu(0)]?)=2D1. (12
respectively. An end particle jumping attempt that creates a
hole is successful with probabilitg,(1—P},), wherePy, is  If D~1/N and = does not scale as®, say7~NA" with B’
the hole probability. Similarly, an end particle jumping at- >3, Eq.(12) becomes
tempt that annihilates a hole succeeds with probability
PP . In equilibrium we expect the same probability for <[XM(T)—XM(0)]2>~NB/_1, (13)
creation and annihilation. TheR,, can be expressed as

p whereB’ —1>2. Equation(13) contradicts Eq(11) and im-
= : . (7) plies that, for values oN large enough, the center of mass
Pa™Po would end up outside the chain. This analysis shows that

Note thatP;, is independent op,. The average number of €ventually ifD~1/N, for Igge enough values &f, 7 must
holes in a chain i®,(N—1) since there areN—1) posi- €ventually scale at most &6.

tions available for holes. Then the average chain lerigth In Fig. 2 we present a scheme that shows a chain vacating
and its fluctuation amplitude are given by the initial occupied sites. Viscosity is proportional to the in-

tegral of xz(t) —x,(t) [see Eq.(6)] and then to the striped

P

(LY=N+P,(N-1), (8) area in Fig. 2. This area must be smaller thanwhich is
smaller thanL .7 Hence, the following relations for the
((L=(L)®=(N=1)Pp(1—Py). (9)  viscosity follows:
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1 | [ I
77o<m LmaX 7)- (14 | g_% I ,:%): I
| p}? \‘pa | | p}’(/ \\‘pa t
Since the ratid_p,/(L) is a constant in the asymptotic limit P ! @) Ps  py ® |£c>| ® Pa ) |£;
[see Eq.(8)], it can be seen that if~ scales at most a3 :’_:nm mn:<_ :DI:I:I n:n: -
then 7, also must also scale at most &3 for N—o. Simi- P NP/ Ds P P
. . € I Pey 1 e
lar arguments can be used in other related models. Previou | p:\. u(é)n '/"a - P‘b\ u@ /:/- |
results of 8>3 correspond then to values of not large L o e I !
enough; the valug=3 must be recovered in the asymptotic cell 1 cell 2
regime.

In what follows we will discuss how the diffusion coeffi- FIG. 3. Representation of the possible configurations for a chain
cient can be derived. The probability of success for an atwith three beads, transitions among configurations, and jumping
tempted jump can be expressed as probabilities.

N—2 (1-Pp)patPrpp unit of time evolving among configurations remain constant.
J=Pn(1=Pp)pc N T N . (19 Agradient in the number of chains is needed. To do so, the

number of chains with configuratiof®), ny, is imposed to
Equation(15) shows that] presents two terms. The first one be null, which implies an ideal sink at that place. At some
refers to the possible jump of a middle particle while thepoint, a reservoir or a source of chains is necessary to main-
second term reflects the possible jump of one of the entkin the chain flux. Then, under steady-state conditions, the
particles. With Eq(7), Eq. (15) takes the form number of chains; in each configuratioi must remain
constant. Therefore, we can write the following:

PaPbPc 2papb Pc
= + — . 16 _
(PatPp)® N(Patpp) Pat Py 10 PoN3=2pPany,
It is well known that for an ordinary random walk the diffu- PaN3=2ppN,,
sion coefficient can be expressed in terms of the mean jump
frequencyl” and step lengtla as Pan1+ PpNa+ PeNa= (Pat Pp+ Pc)N3,
D=Ta? (17

PcNz+ Pans+ PpNe= (Pat Pot+ Pc)Na,
For a chain withN beads,I" is NJ per time unit and the
motion of the center of massis 1N, sincel =1. Hence, the PoNat PpN7=2PaNs,

diffusion coefficient of the center of mass would be given by
PpN4t PpN7=2PaNs,

_ PaPbPc 2 PatPp—Pc
~ N(pa+pp)? o N Pc ' (18) PpN4+ PpN7=2Pans,
It is apparent that this approach leads to incorrect results. For Pans+ Pan7=2ppng,
example, forp,=0 Eq. (18) predictsD#0 which is not
correct because immobile central beads imply a null diffu- Pans+ Ppng+ PcNg=(Pat Ppt Pe)N7. (19

sivity. In this case, only end beads can jump and after a hop

they can only jump in the opposite direction, so hopping isFrom this set of equations, the total number of particles in
extremely correlated. The derivation of E@.8) is wrong cells 1 and 2 can be determinéske Fig. 3. The net flux is
because it is assumed that hops are not correlated. In genergiyen bypzn;+ pyn,, and then, by applying Fick’s first law,

Eq. (16) is valid but Eq.(17) cannot be applied. the diffusion coefficient can be found to be
Correct expressions for the diffusivity for small values of
N can be derived as follows. We will focus &= 3. In Fig. B PaPbPc
3 different configurations for a chain with three beads and its DN=3_(pa+ Po)(Pat Pp+2pPe) (20

evolution are presented. The scheme also shows the prob-

abilities for the possible transitions among configurations. TEExcept when the conditiop,+ p,= p. holds, this result dif-
determine the diffusion coefficient we will use an alternativefers from Eq.(18). Monte Carlo results are in agreement with
approach, not regularly applied in the literature, that simpli-Eq. (20). Note that the diffusion of the center of mass of a
fies the calculations. With this method this problem can bechain is similar to the diffusion of a particle in a complex
solved using only algebril4,19. lattice with inequivalent sites.

The method consists in applying Fick’s law to a hypo-
thetical system consisting of a large number of noninteract-
ing chains of three beads. After some time the system is
assumed to reach steady state at which the average numberWith Monte Carlo simulations, the diffusivity of the cen-
of chains in each configuration and the number of chains peier of mass is calculated through

IV. RESULTS AND DISCUSSION

031804-4



DISCRETIZED MODEL FOR DIFFUSION OF A CHAIN . .. PHYSICAL REVIEW 67, 031804 (2003

10° 1/N. This is the expected diffusivity dependence for a one-
: N dimensional model corresponding to the curvilinear diffusiv-

. ity of a chain in a three-dimensional tulfiee., «=1). The
exponenta for relatively smallN becomes largefcase ) or
smaller(case Il) than 1 because end particles present larger
(case ) or smaller (case IlI) jumping probabilities than
middle particles, as discussed below. For large valueN of
the influence of end particles vanishisge Table )l Theo-
retical results corresponding to E@.8) are also presented.
They are asymptotically correct fdd— oo but differ consid-
erably from those obtained with the model in the rang® of
studied. Equatiori18) and Monte Carlo results are in agree-
ment for case Il, for whiclp,+ p,=p., when bead hops are
not correlated, as shown below.

Note that all the particles forming the chain have the same
chance to be chosen to perform a hop but, in general, end
and middle particles do not have the same chance to hop. In
average, the probability that, once chosen, an end particle
performs a jump to the right or left is

Je=(1—Pp)pa=Pnpp., (22)

104 L while for a middle particle, once chosen, the probability of
10° 10’ N 10? making a jump to the right or left is

D

10"

103 L

S J s e

J,=(1-P,P . 23
FIG. 4. Diffusion coefficient of the center of mass for chains =l ) PrPe @3

consisting ofN beads. The parameters of the model (o, .pc) are  Using Eq.(7), the ratio between expressions of E(2) and
(1, 1/5, 1/3 for case 1,(5/6, 1/6, 1 for case II, and5/36, 1/36, 1 (23) can be written as

for case Ill. Dashed lines correspond to theoretical results according

to Eqg. (18). Note that Eq.(18) should only be applied in case II, Je  Patpy

when hops are not correlated. Straight lines correspond to the J—Z - (29)
asymptotic behavior with slope 1. In case Il dashed and straight m Pe

lines are coincident. For the sake of clarity, diffusivity values for
case | were multiplied by 10 and those for case Ill by 0.1. The
evolutions of at least 100 chains were averaged.

If patpp=p. the probability of jumping is the same for
every particle of the chain. Under this condition, if a jump to
the right occurred, any of the particles in the chain has the
) same probability of having made that jump. As a conse-

D— (Dxm(t) —xm(0)]%) (21  9uence, on average, the resulting configuration of the chain
2t ' does not change and then the chain center of mass executes
an ordinary random walk diffusion. This is satisfied in case I
In Fig. 4, numerically calculated diffusion coefficients for but not in cases | and Ill for which hops becowr@related
some given parameters are presented. We have chosen thi#ge past move is not directly taken into account in the fol-
groups of values for the parameteps, (py, ,Pc), specifically,  lowing step but hops become correlated as a consequence of
(1, 1/5, 1/5 for case |,(5/6, 1/6, 1 for case I, and5/36, the established rules through the resulting configurations. A
1/36, J) for case lll. Parameters have been chosen to alwaykop being to the right or left does not causally depend on the
have the same average number of holeg=£5/6) and the previous move, i.e., the chain does not have memory. How-
same average length and length fluctuafieee Eqs(8) and  ever, if p,+ pp# Pc, iN many configurations the probability
(9)]. In the asymptotic regim® always presents a slope to hop in one direction can be different than in the other one.

TABLE |. Exponentsa and g3 for different values of the free parametgyg, p,, andp.. B=2+« is the expected relation between
diffusivity and viscosity exponents. Relative errors are around 5% fand 1% forg. The evolutions of at least 100 chains were averaged.

4<N=<20 20=N=<100
Case Pa Pp Pc P, o B 2+« o B 2+«
| 1 1/5 1/5 5/6 1.22 3.46 3.22 1.05 3.16 3.05
Il 5/6 1/6 1 5/6 1.01 3.07 3.01 0.98 3.09 2.98
Il 5/36 1/36 1 5/6 0.50 251 2.50 0.77 2.87 2.77
I 1/5 1 1/5 1/6 1.22 3.05 3.22 1.05 3.05 3.05
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Conversely, if thep,+pp=p. condition is satisfied, in all 0.8
possible configurations the next hop has the same probability N=3
to be to the right or left. 0.6

If pa+pPp>p., the end particles are more likely to jump ‘ Long chains: 1, iI, 1l

than those in the middle of the chain. Then, if a jump to the 0.4y

right occurs, a hole creation at the right end of the chain or a

hole annihilation at the left end of the chain is more likely to

occur than a specific hole movement related to middle par-  ¢(n) . !

ticle hops. Then, after a jump to the right, the probability of e e i

finding a hole on the right end will be greater th@p, and

the probability of finding a hole on the left end will be

smaller thanPy, (the opposite happens fqu,+ p,<pc). ALV R RN

Thus, the resulting average configuration changes after a par- sy

ticle hop and, as a consequence, hops becoareelated

This is the reason why Eq18), in which jumps were as-

sumed to be uncorrelated, is not correct except in the

asymptotic case that correspondsNe-« when the influ- 08 b

ence of the end particles becomes negligible. Obviously, if

the conditionp,+ p,=p. is satisfied, the hops of the center

of mass of the chain become uncorrelated and the discrepan- giG. 5. Correlation defined in Eq25) for a chain of three

cies between results from Monte Carlo simulations and thosgeads. In case<, 11I’, and Il parameterp, and p, were inter-

obtained applying Eq(18) disappear. In short, it is not cor- changed for case I, Il, and IlI, respectively. Forse, C(n) con-

rect to apply Eq(17) with I'=NJ anda=1/N if hopping to  verges to—0.275+0.05 for cases | and | to 0+ 0.05 for cases I

the right and left are not equally probable. and Il', and to—0.450+0.05 for cases Ill and Il Exact results
The above discussion becomes clear analyzing a smathn be obtained with Eq29).

chain of three beads. In Fig. 3 we see that configurations 1

and 2, since they are symmetric, have the same probability afase for whichp,+ p,# p., such as in cases | and lll. In

evolving towards configurations 0 or 3. Conversely, if theFig. 5 we present Monte Carlo results f6(n) andN=3 as

chain adopts configuration 3, the probability of jumping toa function ofn. We also present three other cases, (I’,

the right isp. and to the left isp,+ p, per unit time. Ifp,  and 1lI"), for which p, and p, were interchanged. Interest-

+ pp>Pc, the probability of jumping to configuration 1 or 2 ingly, the value of the functiol©(n) for n—oe is invariant

is larger than a jump towards configuration 4. Due to thisunder this interchange.

asymmetry, it is more likely for the chain to adopt configu- An analytical expression o€(n) for N=3 can be de-

ration 3 from configurations 1 and 2 than from configurationduced. With the help of Fig. 3, the probability of having two

4. As a consequence the probability that a chain hops back uccessive hops with the same direction can be shown to be

the previous configuration is greater thanThus, on aver-

age, the chain has the tendency to move in the opposite di- Cct— ( Pat Pp 2(Pat Po)Pc ) (26)

rection of the previous jump. The smalllris, the stronger 2(PatPptPe)  (PatPotPo)?)’

the correlation is. For long chains this effect eventually be-

-------- Short chains: 1, II', HII'

400 600 800 1000 1200
n (hops)

comes negligible. and of having two successive hops with different directions,
To check that indeed the chain hops are correlated, we 2
i i i i Pa™t Pp (PatPp)
analyze the behavior of a chain by devising the following C =k a + a 5
algorithm. Let us define a variabR that can take only the 2(PatPotPc)  (PatPotPe)
value +1 or —1. We wait for a successful hopping. If a hop K
i is to the right thenz(i)=1 and if the hop is to the left + —°2> (27)
Z(i)=—1. The unsuccessful trials between one hop and the (Pat Po+tPc)

next one are not taken into account. Eventually a hed
occurs and therZ(i+1)=1 if the hop is to the right or
Z(i+1)=-—1 if the hop is to the left. Correlation will be

where k is a normalization constant. The@,(n) after an
infinite number of hops can be calculated through

determined with the functio&(n), defined as cCt—-C~
L N C(n—oo)= W (28)
_ 2 D70+
Cn n 2’1 2(1)2(i+1), (25 With Egs.(26) and(27), it can be found that
wheren+1 is the number of successful hops. If jumps are B (Pat Po—Pc)?
not correlated, a hop in one direction is followed by a hop in C(N)pe= — (Pt Pt PI2(pat Po) + Pl (29

the same or a different direction indistinctly and th@(n)
converges to 0 aa increases. This happens in case Il, asResults obtained through Monte Carlo simulations converge
discussed above. Negative correlations are found for anto those using Eq29); see Fig. 5. For example, in cases Il
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FIG. 6. \fl_sco_sity as a function of the number of be&bfor the 3 4 5 6 7 8 910 N 20
three cases in Fig. 4 and that for caSédr which the parameters of

the model p,,py.p.) are (1/5, 1, 1/5. For the sake of clarity,
viscosity values for cases | andwere multiplied by 100 and those
for case Il by 10. The straight lines have the slopes of cases | and Ili
for 20<N=<100 and were drawn as a guide to the éyee Table)l
The evolutions of at least 50 chains were averaged.

FIG. 7. Viscosity as a function of the number of beadgor
ases | and’Ifor a small number of beads. Diffusivities for these
ases are coincident and are shown in the inset. The straight line has
a slope of—1.22. The viscosity exponemg is larger(case ) or
smaller(case 1) than expected from the diffusivity exponent.

and IlI" C(n—=) converges to—0.45. Correlation de- . . .
creases with the chain length, for exam@lgn— o) reduces that ,B_also depends_ oy, . Figure 7 ShOW.S n _detall the
to —0.16 forN=5, and to—0.04 forN=10. Note that Eq viscosity and diffusivity for cases | and.lA viscosity expo-
(29 is’ invariant uﬁder an intérchange of aind Db " nent lower than 3 is obtained for case Ill when the central

In Fig. 6 the numerically calculated values g through beads are more mobile than the end ones. Usually, this con-

Eq. (6) are presentedsee Table )L The found slopes in the dition is not fulfilled in polymer melts which is consistent
double logarithmic scale converge to three\aisicreases for Wlt_rll_hexpebrlmental fllr;dlngs. b derstood b vzina th
all the cases studied. However, case | presents a larger slope € above resulls can be underslood by analyzing the

at low N as found in Ref[11]. Values ofz, for a fourth case eh_avior .Of a chain consisting of three be‘?‘ds' the simplest
(I") corresponding tg,=1/5, p,=1, andp.=1/5 are also chain having a central bead.pgf=py, all configurations are

shown. Note that the diffusivity for casé Is exactly the (iqually likely and the average Igng_th OT the chain(is
same as that for case | becayseis the same in both cases =4, see Eq(8). .If Pa=Py, the chain is said to b.e Iong, the
and values folp, and p, have been interchanged. This can mpst l.'kely configuration is the stretched q@nflggratlon

be easily seen with the help of Ed3), (22), and(23). The 21in F'g' 3, and(L)>4. If Pa<Po, the cha'm IS §a|d to be
probabilities that, once chosen, an end particle and a middl hort since(L)<4 and configuration 1 of Fig. 3 is the most
particle make a jump to the right or to the left are tkely. . . o . .
000/ (Pa-t Pu) aNdpapype/(Pat pp)?, respectively. Conse- As dlspussed above, viscosity is calculated by integrating
guently, since these expressions are invariant under the intetnhe function(t),

change ob, andp,, the jumping probabilities in cases | and

I” are the same and hence diffusivities have the same value, p(t)= i(xR(t)—x,_(tH— 1). (30)

a result that is confirmed in the simulations. Also, the fluc- (L)

tuation amplitudes are coincidefgee Eq.(9)] but the num-

ber of holes are very differerfsee Eq.(7)]. Interestingly, It could be expected that(t) reduces exponentially with
chains with the same diffusivity and fluctuation amplitudetime, say, proportionally to exp(t/7’). In that case, the av-
present different viscosities. Furthermor@,can be larger erage time needed to escape from the initial tube and also the
(case ) or smaller(case 1) than expected from the diffusiv- viscosity, i.e., the integral gf, would just be proportional to

ity exponent Be,pected 2+ ). Indeed, the diffusivity expo-  7'. However, the behavior of functioa is not so simple. In
nent is 1.22 for &N=<20 and viscosity exponents are 3.46 Fig. 8 we present two plots qf(t) for N=3 that shows that
and 3.05 for cases | and, Irespectively. These results show u does not exactly behave as an exponential function. In this
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Long chain evolution Short chain evolution
1 N=3 P p
| oo 'O T
a Pp P (2 )
u(t) < lj
N (\'pc : | [\l:cl
o 110 , o
p.=516 i Pa I
p =1/6 i 2 I [\‘Pb
b |
o [ [T '
p.=1/6 long chain I I AN I
=5/6| (II' 1
o o OO O+ Cide
[-]
short chain FIG. 9. Evolution for short and long chains. Note that after a
1 B e

—Ll et L jump to the right, chains with configurations 1 and 2 adopt configu-
0 50 100 150 200 250 rations 3; see Fig. 3. This implies a reduction in the number of
time occupied sites for the chain having initially configuration 2, but for
. the chain initially with configuration 1u is not altered. When
FIG. 8. Functionu(t), see Eq.(30), for a long and a short chains eventually evolve to adopt another most probable configura-

chain, cases Il andll u for the long chain reduces faster in the tion, u reduces more for a short chain. Dashed lines show how
beginning and eventually slower than for the short chain. Resu”ﬁqitiélly occupied sites are vacated '

correspond to the average of 1000 trials.

long chain must decay slower as seen in Fig. 10. The fact
figure we present results for a short and a long chain thathat central beads have rapid jumps does not directly contrib-
diffuses through noncorrelated hops of their beads, pg., ute to the chain vacating initially occupied sites; the move-
+pp=p.. u for the long chain reduces faster at the begin-ment of end beads are needed. In casg®f Fig. 10 then,
ning and eventually slower than for the short chain. Thisthe reduction ofu with time is dictated by chain diffusion
result can be interpreted with the help of Figiv@ maintain  and then viscosity exponents are expected to be directly re-
the configuration names given in Fig. & long chain shows lated to those of diffusioiisee case Il in Table)l
a preference for configuration 2For the sake of analysis Short (b) p,+ pp>p. and p,<<p,. Most of the time the
simplicity, let us consider thagt,>p,.) As soon as a jump chain is in configuration 1 and théh)~3. Sincep, is large
occurs, say that the chain adopts configuration 3, the value @ompared top.., the chain stretches to the right and to the
w reduces to=0.8 and if the chain eventually reaches con-left many times before eventually reaching configuration 4.
figuration 6, u keeps this value. On the other hand, a shortwhile this happensy is not affected. That is, the chain will
chain has a preference for configuration(Ror the sake of be in configurations of cell 1 for a long time before passing
analysis simplicity, let us consider thpt>p,.) If a jump  to configurations of a neighbor cell whenreduces to 0.67.
occurs and configuration 3 is adoptedjs not affected and Long (b} patpp>p. and p.>py. Most of the time the
when the chain eventually adopts configurationu3akes a  chain is in configuration 2 and thé€ih)~5. The chain starts
value ~0.67. This explains whyu reduces faster for long in configuration 2 and very rapidly contracts at the right and
chains than for short chains at short times. This stronglyeft, reducingu to ~0.6. This effect is clearly reflected in
affects the integral of. and then the viscosity. In what fol- Fig. 10b). The rapid initial reduction of: is large enough so
lows we will discuss when the expected relation betwaen that the viscosity of the long chain is smaller than that of the
and  holds. short casdsee Fig. 7N=3), a result which is counterintui-

In Fig. 10 we presenj(t) when p,+p,#p.. Results tive within the framework of the original reptation model
can be rationalized considering extreme cases as followsgnote that the two chains have the same diffusion coeffi-
(See Fig. 9 and Fig. 3 during the analykis. ciend. In short, a chain spends a lot of time in cell 1 before

Short (a) pa+ppr<<p. and p,<p,. Most of the time the adopting a configuration of cell 2. During this timereduces
chain is in configuration 1 and th€h )~3. When it evolves for a long chain while it is not affected for a short chain.

to configuration 3, does not change but, singg,+py The above analysis shows that foy+ p,>p. an anoma-
<p., very likely the chain reaches configuration 5. Everylous relation between diffusion and viscosity can be found.
reduction ofu is of 3. Short chains show larger viscosities while long chains show

Long (a) pa+ pPp<<p. and p,>p,. Most of the time the  smaller viscosities than that which would emerge from the
chain is in configuration 2 and thegfiL)~5. As soon as it  original reptation theory. Since this effect reduces Wittthe
evolves to configurations 3; reduces tc~0.8. Once in con- resulting discrepancy eventually disappears. As a result, the
figuration 3 the chain can very likely reach configuration 6.viscosity exponent can be larger or smaller than expected.
When that happena maintains the value 0.8. This explains  To check for the influence of length fluctuations, we took
why in the beginningu for the long chain can drop as fast as chains of constant length equal #io) and made their center
the short one of the case of shat Eventually,u for the  of mass move as dictated by the center of mass of the chains
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= 10° ¢
P, +P, <P,
M
u(t)
p.=5/36 5
] p,=1/36 10 L-
p,=1
long chain
p,=1/36 ' 10 |
p,=5/36|(1II') 3
p=1
short chaln
g *
10% |
(47 J VO P U WA S VN R S S SN ST TS SO E .
0 200 400 600 800 1000
time
10%
iy (D) N=3 E e
[ P+P>P, " X
w(t) | ' 2 3 4 5678910 20
- N
N pP,=1/5 FIG. 11. Full symbols represent the viscosity for chains that
| (1| P~ follow the rules of our model. Open symbols represent the viscosity
p =1/5 for chains of constant leng{L), for which their centers of mass
move as dictated by the center of mass of chains that follow our
p= short chain model dynamics during diffusion. Note that as a consequence of
'_1/5 fluctuations the viscosity exponent can be larger or smaller depend-
Py= (l) ing on the adopted parameters of the model.
p =1/5
long chain \\ figuration 1 and theqL)~3. When the chain evolves to
\ configuration 3 or Ou is not affected despite its center-of-
mass movements. Meanwhilg, reduces for a rigid chain
0.1 ") = '"')0' = '2")0' e ‘360' —t '4(')0' — ‘500 whose center of mass moves. Eventually for lakgje the

effect of fluctuations vanishes and then the curves overlap.
Thus, as a consequence of these details in chain dynagics,
for the rigid chains can be larger or smaller than that for the
FIG. 10. Functionu(t), see Eq(30), for long and short chains,  chain with fluctuating length. Indeed, in case | length fluc-
cases lll and Il (a), and cases | and [b). Note that for cases | and  t,5tions caus@ to increase from 3.39 to 3.49, while in case

I’, even though diffusivity is the same, the resulting value of vis-|/ fluctuations causg@ to decrease from 3.26 to 3.07
cosity is larger for the short chain. Values pfare the average of ' o

1000 trials.

time

V. CONCLUSIONS

that follow our model dynamics during their diffusion. The = We have analyzed in detail a computer model that simu-
resulting viscosities as a function bffor cases | and’lare  lates the diffusion of a chain of beads in one dimension. We
shown in Fig. 11. We present results for a range of lightfound that the chain movements due to the dynamics of end
chains withN from 3 to 20 where the influence of fluctua- beads and its relation to the dynamics of internal beads play
tions is more significanfsee Eq.(9) and Ref.[12]]. Since the key role. If the chain has the same probability of hopping
fluctuations imply an extending and compressing chain whilgo the right or left in all possible configurationg{+ py
diffusing, an acceleration of the stress relaxation is expecteds p.), its center of mass executes an ordinary random walk
Results for case | show this trend. However, cdsehows and diffusivity and viscosity exponents behave as expected
that for small values oN viscosity is smaller for the chains in the reptation model as originally introduced& 1, g

with rigid length. =2+ a=3). When beads do not have the same probability

This surprising result can be explained with the help ofof hopping to the right or left§,+ p,# p.), bead hops are

Fig. 3. Sincep,<p,, most of the time the chain is in con- found to be correlated and diffusivity and viscosity expo-
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nents present unexpected values. Thus, the viscosity exption. It should not surprise us to find that it depends on some
nent can be larger or smaller than 3 and fluctuations in theetails of the model.

chain length can increase or reduce its value. Eventually in

all the studied cases, universality is recovered for large

enough values oN, « converges to 1 ang to 3. Since ACKNOWLEDGMENTS
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