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Discretized model for diffusion of a chain in one dimension
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With the help of Monte Carlo simulations, the one-dimensional diffusion motion of a chain ofN beads is
studied to determine its diffusion coefficient and viscosity. We found that the end bead movements with respect
to that of the central beads play a key role. There is no memory between bead hops but they become correlated
as a consequence of the chain dynamics. This determines the scaling exponents and the relation connecting
them. In particular, the scaling exponent for the viscosity can be smaller or greater than 3 but it must scale as
N3 in the asymptotic regime (N→`). We analyze in detail the dynamics of a chain with three beads to explain
why the expected relation between diffusivity and viscosity exponents is not satisfied.
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I. INTRODUCTION

Diffusion mechanisms can be much more complex th
those for single-particle diffusion on a frozen potential e
ergy landscape. In particular, the presence of interact
among diffusing particles imparts a collective character
the process that can dramatically affect diffusivity. To date
variety of mechanisms has been proposed to describe
migration of clusters. They include the sequential displa
ment of individual particles, the successive shearing of so
compact blocks, dislocation mechanisms, and gliding of
whole cluster@1,2#.

If only single-jump mechanisms are considered, clus
dynamics results from the sequential motion of individu
atoms. For example, self-diffusion of large Ag and Cu clu
ters on the~100! surface takes place by adatom edge dif
sion and evaporation and condensation of adatoms@3#. If we
restrict ourselves to one dimension, the cluster is reduce
a chain and possible mechanisms for migration are es
tially of a single kind. A chain in one dimension can on
move by contracting and stretching in a wormlike fashio
This mechanism, called reptation in polymer physics, play
key role in the dynamics of entangled polymer melts@4#. In
the dynamics of entangled polymers, neighboring cha
constrain a given chain to diffuse only along a confining tu
and then the chain executes a one-dimensional random
@5,6#. Thus, a chain can progress by leaving part of the ini
tube and creating a new part as it reptates. The tube m
successfully explains many characteristic features exp
mentally observed but certain discrepancies between th
and experiment remain controversial.

Reptation, as originally introduced, predicts that diffus
ity scales with the molecular weight asM 2a, wherea52 in
three dimensions, and the time to escape completely from
initial tube and therefore the zero-shear-rate viscosity sc
with molecular weight ash0;Mb, with b53. These results
can be readily derived by resorting to the Einstein relat
@6#. If all beads have the same behavior, the frictional force
proportional to the number of beads in the chain,N. Then,
the mobility m must be equal tom1 /N, wherem1 , indepen-
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dent of N, is the mobility of a single bead. The Einste
relation states that if the system under study obeys a Bo
mann distribution, mobility and diffusion are proportiona
therefore, the one-dimensional diffusion coefficient or tu
diffusion, D tube, must be equal toD1 /N, whereD1 is the
diffusion coefficient of a single bead. To escape from t
original tube, the chain must progress a distanceL propor-
tional to N. The time needed for that is

t5
L2

D tube
5

NL2

D1
}N3. ~1!

While a reptating chain moves along its tube a lengthL, in
space this motion corresponds to a much smaller displa
ment because the tube is contoured; it can be shown
D rep5D1 /N2. Despite some scatter in the experimenta
found values, the viscosity is experimentally found to sc
as M3.4. There have been several explanations for these
sults, most of them consisting of modifications of the rep
tion theory@7#. Nevertheless, the disagreement between
predictions of theoretical models and experimental res
should not be surprising since the dynamics of real entang
polymer melts is still controversial.

In this paper we discuss in some detail a model we
cently introduced that describes a chain diffusing in one
mension@8#. The dynamics is similar to that found in th
original work of de Gennes@5# in which the constraints in
the dynamics due to other chains are only reflected in
trapping of the chain in a certain tube. The chain progres
by reptating, leaving some parts of the tube and creating n
ones as it diffuses. Our model, however, can exhibit a sca
exponent for the viscositylarger or smallerthan 3. Here we
show that the anomalous viscosity scaling is the conseque
of the whole chain dynamics during diffusion in which th
dynamics of end beads plays a central role. Specifically,
focus on a chain consisting of three particles. The deta
analysis of this simple cluster sheds new light on a probl
of enduring interest: the fact that the molecular-weight d
pendence of the viscosity is different than the original rep
©2003 The American Physical Society04-1
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tion model prediction. We found that the bead hops are c
related and that this is crucial in the resulting values foa
andb.

II. MODEL

Let us consider a chain in a one-dimensional lattice c
sisting ofN particles or beads that can hop to the nearest
only if this site is empty. Hops are accomplished by picki
a particle at random and attempting to move it. There can
only one particle per site. Particles can hop to the right or
but no more than one site can be empty between two
them. In Fig. 1 hoppings for particles in all possible config
rations are shown. In configuration~a! the end particle, if
selected, can only jump to the right and the resulting c
figuration is that of~b!. This jump probability is calledpa .
In configuration~b! the end particle can only jump to the le
and, if selected, the attempted jump succeeds with proba
ity pb . A particle not at one of the ends—a middle particle
can be in any of the configurations shown in Fig. 1~c!, 1~d!,
or 1~e!. If it is in configuration~c!, the particle can jump and
after being randomly selected the probability of hopping
taken to bepc . Particles in configurations~d! and ~e! are
unable to move. Hence,pa , pb , andpc are the free param
eters in our model (0<pa ,pb ,pc<1).

Thus, the computer model is based on a random walk
one-dimensional lattice ofN particles forming a chain with
the restrictions described above. At timet one particle of the
chain is randomly selected. Then, the probability of jump
is dictated by the rules described for middle and end parti
and the time is increased bydt51/N. Every time a particle
jumps, the center of mass moves 1/N of the distancel be-
tween adjacent sites of the lattice. In the following we u
l 51. The repetition of this procedure simulates the rand
motion of the chain.

A simple way to see that the viscosity is directly related
the time needed for the chain to escape from the initial t

FIG. 1. Configurations for end@~a!,~b!# and middle@~c!,~d!,~e!#
particles and their possible hops.
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can be found in Refs.@6# and @9#. The Maxwell model is of
use in predicting the response of a polymer during str
relaxation. In this case, if a constant strain is imposed on
system, the stress as a function of time behaves as
5s0 exp(2Et/h). Then, its relaxation time would beh/E,
whereE is the Young modulus.

According to the reptation model, after a step strain,
resulting stress decays as the chain reptates into an u
formed configuration. Consider a small change in stress
due to a change in straing,

ds5G~ t !dg5G~ t !ġdt, ~2!

whereG(t) is called the relaxation modulus. Integrating th
expression gives

s5E
2`

t

G~ t2t8!ġdt8. ~3!

Thus, the stress is an integral, over all past time, of the
laxation modulus times the rate of strain. For a const
value of the rate of strain, we can write

s5ġE
2`

t

G~ t2t8!dt85ġE
0

`

G~ t !dt. ~4!

The ratios/ġ in steady shearing flow is independent ofġ if
ġ is vanishingly small. This ratio is known ash0 , the zero-
shear-rate viscosity. Therefore,

h05E
0

`

G~ t !dt. ~5!

Let xR(t) be the leftmost propagation position of the rig
end of the chain andxL(t) be the rightmost propagation po
sition of the left end of the cluster. The zero-shear-rate v
cosity h0 is then calculated by integrating the stress@10,11#
which is proportional to the number of initially occupie
sites, i.e.,

h05
1

^L& E0

`

^xR~ t !2xL~ t !11&dt, ~6!

whereL is the chain length, the brackets denote the ensem
average, and the integral is evaluated only for positive val
of the integrand.

A related model, the repton model, was originally pr
posed by Rubinstein@11#. This model consists ofN random
walkers ~reptons! in one dimension. The reptons move
such a way as to not break the connectivity of the cluste
site in the middle of the chain cannot be vacated and
original order of the reptons is preserved. The model c
tains a parameter,z, which is the number of possible gate
for an end repton to move to. Then there arez21 possible
gates through which to enter into an empty cell and only o
gate through which to move into an already occupied o
Accordingly, the probability of a move that lengthens t
configuration is (z21) times the probability of a move in th
middle of the chain. Rubinstein found that the viscos
scales with the cluster size with exponents greater tha
4-2
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with the exact value depending on the parameterz; for the
casez56, which can be understood to correspond to a thr
dimensional cubic lattice, the exponent takes a value of 3
predicting what is observed in experiments. Although at fi
glance the rules of our model look different than those of
repton model, there is a direct correspondence between
models regarding diffusion. However, since in the rep
model particles can be at the same site, viscosity does
present the same behavior. Operatively, the main differe
between both models is the flexibility we adopted regard
the possible different jump probabilities for particles at t
ends of chains relative to those for the central ones.

The question now is what is the difference in esse
between the de Gennes original reptation model and a re
ing real polymeric chain. It has been proposed that the b
difference is that in the de Gennes solution the fluctuation
the chain length are not considered. De Gennes assumes
tation to be the random walk of a fixed length object with
curvilinear diffusion coefficient inversely proportional to i
molecular weight~see, for example, Refs.@4,12,13#!. In the
repton model and ours this assumption is not made bec
chains are free to stretch and compress as they diffuse
deed, it is possible for one end to move independently of
other and the length of the chain can vary. The effect
length fluctuation was expressed analytically quite simply
a factor@12k/M1/2#3 with k being a constant@12#. This is
not a power law with an exponent of 3.4 but it approxima
the viscosity over the range of molecular weights used
experiments. This explanation fails for our model beca
we found that resulting values for the viscosity exponent
be larger but also smallerthan 3. We also found chains wit
the same diffusivity and length fluctuation amplitude th
show viscosities larger or smaller than the value consis
with the diffusivity exponent. Furthermore, we specifica
show that fluctuations can increase or decrease viscosity

III. THEORETICAL CONSIDERATIONS

An empty site in the chain will be called ahole. The
average number of holes in a chain can be easily calcul
as follows. A hole is created or annihilated every time an e
particle jumps away from the chain or toward the cha
respectively. An end particle jumping attempt that create
hole is successful with probabilitypa(12Ph), wherePh is
the hole probability. Similarly, an end particle jumping a
tempt that annihilates a hole succeeds with probab
pbPh . In equilibrium we expect the same probability fo
creation and annihilation. Then,Ph can be expressed as

Ph5
pa

pa1pb
. ~7!

Note thatPh is independent ofpc . The average number o
holes in a chain isPh(N21) since there are (N21) posi-
tions available for holes. Then the average chain length^L&
and its fluctuation amplitude are given by

^L&5N1Ph~N21!, ~8!

^~L2^L&!2&5~N21!Ph~12Ph!. ~9!
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Monte Carlo simulations verify these results.
The extreme case, in which the chain needs to diffuse

longest distance to escape from the tube, occurs when
chain is deformed in a such a way as to have the cente
mass close to one end. Let us first consider a chain of a
age lengthL and fluctuationsDL; xM is the position of the
center of mass andt the time at which the chain leaves th
original tube. Hence, the following relation must be valid

uxM~t!2xM~0!u<2L12DL,4L. ~10!

This equation indicates that the distance traveled by the c
ter of mass at the moment the chain leaves the tube m
scale at most asN, sinceL scales withN. Then, we can write

^@xM~t!2xM~0!#2&,16L2;N2 ~11!

and it is well known that for a given timet5t

^@xM~t!2xM~0!#2&52Dt. ~12!

If D;1/N andt does not scale asN3, sayt;Nb8 with b8
.3, Eq. ~12! becomes

^@xM~t!2xM~0!#2&;Nb821, ~13!

whereb821.2. Equation~13! contradicts Eq.~11! and im-
plies that, for values ofN large enough, the center of mas
would end up outside the chain. This analysis shows t
eventually ifD;1/N, for large enough values ofN, t must
eventually scale at most asN3.

In Fig. 2 we present a scheme that shows a chain vaca
the initial occupied sites. Viscosity is proportional to the i
tegral of xR(t)2xL(t) @see Eq.~6!# and then to the striped
area in Fig. 2. This area must be smaller thanLt which is
smaller thanLmaxt. Hence, the following relations for the
viscosity follows:

FIG. 2. Stress relaxation as a function of time. The striped a
is proportional to viscosity. The rectangle represents the orig
tube and the thick lines represent the chain.
4-3
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h0,
1

^L&
Lmax̂ t&. ~14!

Since the ratioLmax/^L& is a constant in the asymptotic lim
@see Eq.~8!#, it can be seen that if̂t& scales at most asN3

thenh0 also must also scale at most asN3 for N→`. Simi-
lar arguments can be used in other related models. Prev
results ofb.3 correspond then to values ofN not large
enough; the valueb53 must be recovered in the asympto
regime.

In what follows we will discuss how the diffusion coeffi
cient can be derived. The probability of success for an
tempted jump can be expressed as

J5Ph~12Ph!pc

N22

N
1

~12Ph!pa1Phpb

N
. ~15!

Equation~15! shows thatJ presents two terms. The first on
refers to the possible jump of a middle particle while t
second term reflects the possible jump of one of the
particles. With Eq.~7!, Eq. ~15! takes the form

J5
papbpc

~pa1pb!2 1
2papb

N~pa1pb! S 12
pc

pa1pb
D . ~16!

It is well known that for an ordinary random walk the diffu
sion coefficient can be expressed in terms of the mean ju
frequencyG and step lengtha as

D5Ga2. ~17!

For a chain withN beads,G is NJ per time unit and the
motion of the center of massa is 1/N, sincel 51. Hence, the
diffusion coefficient of the center of mass would be given

D5
papbpc

N~pa1pb!2 S 11
2

N

pa1pb2pc

pc
D . ~18!

It is apparent that this approach leads to incorrect results.
example, forpc50 Eq. ~18! predicts DÞ0 which is not
correct because immobile central beads imply a null dif
sivity. In this case, only end beads can jump and after a
they can only jump in the opposite direction, so hopping
extremely correlated. The derivation of Eq.~18! is wrong
because it is assumed that hops are not correlated. In gen
Eq. ~16! is valid but Eq.~17! cannot be applied.

Correct expressions for the diffusivity for small values
N can be derived as follows. We will focus onN53. In Fig.
3 different configurations for a chain with three beads and
evolution are presented. The scheme also shows the p
abilities for the possible transitions among configurations.
determine the diffusion coefficient we will use an alternat
approach, not regularly applied in the literature, that sim
fies the calculations. With this method this problem can
solved using only algebra@14,15#.

The method consists in applying Fick’s law to a hyp
thetical system consisting of a large number of nonintera
ing chains of three beads. After some time the system
assumed to reach steady state at which the average nu
of chains in each configuration and the number of chains
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unit of time evolving among configurations remain consta
A gradient in the number of chains is needed. To do so,
number of chains with configuration~0!, n0 , is imposed to
be null, which implies an ideal sink at that place. At som
point, a reservoir or a source of chains is necessary to m
tain the chain flux. Then, under steady-state conditions,
number of chainsni in each configurationi must remain
constant. Therefore, we can write the following:

pbn352pan1 ,

pan352pbn2 ,

pan11pbn21pcn45~pa1pb1pc!n3 ,

pcn31pan51pbn65~pa1pb1pc!n4 ,

pbn41pbn752pan5 ,

pbn41pbn752pan5 ,

pbn41pbn752pan5 ,

pan41pan752pbn6 ,

pan51pbn61pcn85~pa1pb1pc!n7 . ~19!

From this set of equations, the total number of particles
cells 1 and 2 can be determined~see Fig. 3!. The net flux is
given bypan11pbn2 , and then, by applying Fick’s first law
the diffusion coefficient can be found to be

DN535
papbpc

~pa1pb!~pa1pb12pc!
. ~20!

Except when the conditionpa1pb5pc holds, this result dif-
fers from Eq.~18!. Monte Carlo results are in agreement wi
Eq. ~20!. Note that the diffusion of the center of mass of
chain is similar to the diffusion of a particle in a comple
lattice with inequivalent sites.

IV. RESULTS AND DISCUSSION

With Monte Carlo simulations, the diffusivity of the cen
ter of mass is calculated through

FIG. 3. Representation of the possible configurations for a ch
with three beads, transitions among configurations, and jump
probabilities.
4-4
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D5
^@xM~ t !2xM~0!#2&

2t
. ~21!

In Fig. 4, numerically calculated diffusion coefficients f
some given parameters are presented. We have chosen
groups of values for the parameters (pa ,pb ,pc), specifically,
~1, 1/5, 1/5! for case I,~5/6, 1/6, 1! for case II, and~5/36,
1/36, 1! for case III. Parameters have been chosen to alw
have the same average number of holes (Ph55/6) and the
same average length and length fluctuation@see Eqs.~8! and
~9!#. In the asymptotic regimeD always presents a slop

FIG. 4. Diffusion coefficient of the center of mass for chai
consisting ofN beads. The parameters of the model (pa ,pb ,pc) are
~1, 1/5, 1/5! for case I,~5/6, 1/6, 1! for case II, and~5/36, 1/36, 1!
for case III. Dashed lines correspond to theoretical results accor
to Eq. ~18!. Note that Eq.~18! should only be applied in case II
when hops are not correlated. Straight lines correspond to
asymptotic behavior with slope21. In case II dashed and straigh
lines are coincident. For the sake of clarity, diffusivity values
case I were multiplied by 10 and those for case III by 0.1. T
evolutions of at least 100 chains were averaged.
03180
ree
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1/N. This is the expected diffusivity dependence for a on
dimensional model corresponding to the curvilinear diffus
ity of a chain in a three-dimensional tube~i.e., a51). The
exponenta for relatively smallN becomes larger~case I! or
smaller~case III! than 1 because end particles present lar
~case I! or smaller ~case III! jumping probabilities than
middle particles, as discussed below. For large values oN
the influence of end particles vanishes~see Table I!. Theo-
retical results corresponding to Eq.~18! are also presented
They are asymptotically correct forN→` but differ consid-
erably from those obtained with the model in the range oN
studied. Equation~18! and Monte Carlo results are in agre
ment for case II, for whichpa1pb5pc , when bead hops are
not correlated, as shown below.

Note that all the particles forming the chain have the sa
chance to be chosen to perform a hop but, in general,
and middle particles do not have the same chance to hop
average, the probability that, once chosen, an end par
performs a jump to the right or left is

Je5~12Ph!pa5Phpb , ~22!

while for a middle particle, once chosen, the probability
making a jump to the right or left is

Jm5~12Ph!Phpc . ~23!

Using Eq.~7!, the ratio between expressions of Eqs.~22! and
~23! can be written as

Je

Jm
5

pa1pb

pc
. ~24!

If pa1pb5pc the probability of jumping is the same fo
every particle of the chain. Under this condition, if a jump
the right occurred, any of the particles in the chain has
same probability of having made that jump. As a con
quence, on average, the resulting configuration of the ch
does not change and then the chain center of mass exe
an ordinary random walk diffusion. This is satisfied in case
but not in cases I and III for which hops becomecorrelated.
The past move is not directly taken into account in the f
lowing step but hops become correlated as a consequen
the established rules through the resulting configurations
hop being to the right or left does not causally depend on
previous move, i.e., the chain does not have memory. H
ever, if pa1pbÞpc , in many configurations the probabilit
to hop in one direction can be different than in the other o

ng

e

e

n
ed.
TABLE I. Exponentsa andb for different values of the free parameterspa , pb , andpc . b521a is the expected relation betwee
diffusivity and viscosity exponents. Relative errors are around 5% fora and 1% forb. The evolutions of at least 100 chains were averag

Case pa pb pc Ph

4<N<20 20<N<100

a b 21a a b 21a

I 1 1/5 1/5 5/6 1.22 3.46 3.22 1.05 3.16 3.05
II 5/6 1/6 1 5/6 1.01 3.07 3.01 0.98 3.09 2.98
III 5/36 1/36 1 5/6 0.50 2.51 2.50 0.77 2.87 2.77
I8 1/5 1 1/5 1/6 1.22 3.05 3.22 1.05 3.05 3.05
4-5
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Conversely, if thepa1pb5pc condition is satisfied, in all
possible configurations the next hop has the same probab
to be to the right or left.

If pa1pb.pc , the end particles are more likely to jum
than those in the middle of the chain. Then, if a jump to
right occurs, a hole creation at the right end of the chain o
hole annihilation at the left end of the chain is more likely
occur than a specific hole movement related to middle p
ticle hops. Then, after a jump to the right, the probability
finding a hole on the right end will be greater thanPh , and
the probability of finding a hole on the left end will b
smaller thanPh ~the opposite happens forpa1pb,pc).
Thus, the resulting average configuration changes after a
ticle hop and, as a consequence, hops becomecorrelated.
This is the reason why Eq.~18!, in which jumps were as-
sumed to be uncorrelated, is not correct except in
asymptotic case that corresponds toN→` when the influ-
ence of the end particles becomes negligible. Obviously
the conditionpa1pb5pc is satisfied, the hops of the cent
of mass of the chain become uncorrelated and the discre
cies between results from Monte Carlo simulations and th
obtained applying Eq.~18! disappear. In short, it is not cor
rect to apply Eq.~17! with G5NJ anda51/N if hopping to
the right and left are not equally probable.

The above discussion becomes clear analyzing a s
chain of three beads. In Fig. 3 we see that configuration
and 2, since they are symmetric, have the same probabilit
evolving towards configurations 0 or 3. Conversely, if t
chain adopts configuration 3, the probability of jumping
the right ispc and to the left ispa1pb per unit time. Ifpa
1pb.pc , the probability of jumping to configuration 1 or
is larger than a jump towards configuration 4. Due to t
asymmetry, it is more likely for the chain to adopt config
ration 3 from configurations 1 and 2 than from configurati
4. As a consequence the probability that a chain hops bac
the previous configuration is greater than1

2. Thus, on aver-
age, the chain has the tendency to move in the opposite
rection of the previous jump. The smallerN is, the stronger
the correlation is. For long chains this effect eventually b
comes negligible.

To check that indeed the chain hops are correlated,
analyze the behavior of a chain by devising the followi
algorithm. Let us define a variableZ that can take only the
value11 or 21. We wait for a successful hopping. If a ho
i is to the right thenZ( i )51 and if the hop is to the lef
Z( i )521. The unsuccessful trials between one hop and
next one are not taken into account. Eventually a hopi 11
occurs and thenZ( i 11)51 if the hop is to the right or
Z( i 11)521 if the hop is to the left. Correlation will be
determined with the functionC(n), defined as

C~n!5
1

n (
i 51

n

Z~ i !Z~ i 11!, ~25!

wheren11 is the number of successful hops. If jumps a
not correlated, a hop in one direction is followed by a hop
the same or a different direction indistinctly and thenC(n)
converges to 0 asn increases. This happens in case II,
discussed above. Negative correlations are found for
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case for whichpa1pbÞpc , such as in cases I and III. In
Fig. 5 we present Monte Carlo results forC(n) andN53 as
a function ofn. We also present three other cases, (I8, II8,
and III8), for which pa and pb were interchanged. Interes
ingly, the value of the functionC(n) for n→` is invariant
under this interchange.

An analytical expression ofC(n) for N53 can be de-
duced. With the help of Fig. 3, the probability of having tw
successive hops with the same direction can be shown t

C15kS pa1pb

2~pa1pb1pc!
1

2~pa1pb!pc

~pa1pb1pc!
2D , ~26!

and of having two successive hops with different directio

C25kS pa1pb

2~pa1pb1pc!
1

~pa1pb!2

~pa1pb1pc!
2

1
pc

2

~pa1pb1pc!
2D , ~27!

where k is a normalization constant. Then,C(n) after an
infinite number of hops can be calculated through

C~n→`!5
C12C2

C11C2 . ~28!

With Eqs.~26! and ~27!, it can be found that

C~n!n→`5 2
~pa1pb2pc!

2

~pa1pb1pc!@2~pa1pb!1pc#
. ~29!

Results obtained through Monte Carlo simulations conve
to those using Eq.~29!; see Fig. 5. For example, in cases I

FIG. 5. Correlation defined in Eq.~25! for a chain of three
beads. In cases I8, II8, and III8 parameterspa and pb were inter-
changed for case I, II, and III, respectively. Forn→`, C(n) con-
verges to20.27560.05 for cases I and I8, to 060.05 for cases II
and II8, and to20.45060.05 for cases III and III8. Exact results
can be obtained with Eq.~29!.
4-6
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and III8 C(n→`) converges to20.45. Correlation de-
creases with the chain length, for exampleC(n→`) reduces
to 20.16 for N55, and to20.04 for N510. Note that Eq.
~29! is invariant under an interchange ofpa andpb .

In Fig. 6 the numerically calculated values ofh0 through
Eq. ~6! are presented~see Table I!. The found slopes in the
double logarithmic scale converge to three asN increases for
all the cases studied. However, case I presents a larger s
at low N as found in Ref.@11#. Values ofh0 for a fourth case
(I8) corresponding topa51/5, pb51, andpc51/5 are also
shown. Note that the diffusivity for case I8 is exactly the
same as that for case I becausepc is the same in both case
and values forpa and pb have been interchanged. This ca
be easily seen with the help of Eqs.~7!, ~22!, and~23!. The
probabilities that, once chosen, an end particle and a mi
particle make a jump to the right or to the left a
papb /(pa1pb) andpapbpc /(pa1pb)2, respectively. Conse
quently, since these expressions are invariant under the i
change ofpa andpb , the jumping probabilities in cases I an
I8 are the same and hence diffusivities have the same va
a result that is confirmed in the simulations. Also, the flu
tuation amplitudes are coincident@see Eq.~9!# but the num-
ber of holes are very different@see Eq.~7!#. Interestingly,
chains with the same diffusivity and fluctuation amplitu
present different viscosities. Furthermore,b can be larger
~case I! or smaller~case I8) than expected from the diffusiv
ity exponent (bexpected521a). Indeed, the diffusivity expo-
nent is 1.22 for 4<N<20 and viscosity exponents are 3.4
and 3.05 for cases I and I8, respectively. These results sho

FIG. 6. Viscosity as a function of the number of beadsN for the
three cases in Fig. 4 and that for case I8 for which the parameters o
the model (pa ,pb ,pc) are ~1/5, 1, 1/5!. For the sake of clarity,
viscosity values for cases I and I8 were multiplied by 100 and thos
for case II by 10. The straight lines have the slopes of cases I an
for 20<N<100 and were drawn as a guide to the eye~see Table I!.
The evolutions of at least 50 chains were averaged.
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that b also depends onPh . Figure 7 shows in detail the
viscosity and diffusivity for cases I and I8. A viscosity expo-
nent lower than 3 is obtained for case III when the cen
beads are more mobile than the end ones. Usually, this
dition is not fulfilled in polymer melts which is consisten
with experimental findings.

The above results can be understood by analyzing
behavior of a chain consisting of three beads, the simp
chain having a central bead. Ifpa5pb , all configurations are
equally likely and the average length of the chain is^L&
54, see Eq.~8!. If pa.pb , the chain is said to be long, th
most likely configuration is the stretched one~configuration
2 in Fig. 3!, and^L&.4. If pa,pb , the chain is said to be
short sincê L&,4 and configuration 1 of Fig. 3 is the mos
likely.

As discussed above, viscosity is calculated by integrat
the functionm(t),

m~ t !5
1

^L&
^xR~ t !2xL~ t !11&. ~30!

It could be expected thatm(t) reduces exponentially with
time, say, proportionally to exp(2t/t8). In that case, the av
erage time needed to escape from the initial tube and also
viscosity, i.e., the integral ofm, would just be proportional to
t8. However, the behavior of functionm is not so simple. In
Fig. 8 we present two plots ofm(t) for N53 that shows that
m does not exactly behave as an exponential function. In

III

FIG. 7. Viscosity as a function of the number of beadsN for
cases I and I8 for a small number of beads. Diffusivities for thes
cases are coincident and are shown in the inset. The straight line
a slope of21.22. The viscosity exponentb is larger ~case I! or
smaller~case I8) than expected from the diffusivity exponent.
4-7
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figure we present results for a short and a long chain
diffuses through noncorrelated hops of their beads, i.e.,pa
1pb5pc . m for the long chain reduces faster at the beg
ning and eventually slower than for the short chain. T
result can be interpreted with the help of Fig. 9~we maintain
the configuration names given in Fig. 3!. A long chain shows
a preference for configuration 2.~For the sake of analysi
simplicity, let us consider thatpa@pb .) As soon as a jump
occurs, say that the chain adopts configuration 3, the valu
m reduces to'0.8 and if the chain eventually reaches co
figuration 6,m keeps this value. On the other hand, a sh
chain has a preference for configuration 1.~For the sake of
analysis simplicity, let us consider thatpb@pa .) If a jump
occurs and configuration 3 is adopted,m is not affected and
when the chain eventually adopts configuration 5,m takes a
value '0.67. This explains whym reduces faster for long
chains than for short chains at short times. This stron
affects the integral ofm and then the viscosity. In what fol
lows we will discuss when the expected relation betweea
andb holds.

In Fig. 10 we presentm(t) when pa1pbÞpc . Results
can be rationalized considering extreme cases as follo
~See Fig. 9 and Fig. 3 during the analysis.!

Short (a): pa1pb!pc and pa!pb . Most of the time the
chain is in configuration 1 and then^L&'3. When it evolves
to configuration 3,m does not change but, sincepa1pb
!pc , very likely the chain reaches configuration 5. Eve
reduction ofm is of 1

3.
Long (a): pa1pb!pc and pa@pb . Most of the time the

chain is in configuration 2 and then̂L&'5. As soon as it
evolves to configurations 3,m reduces to'0.8. Once in con-
figuration 3 the chain can very likely reach configuration
When that happensm maintains the value 0.8. This explain
why in the beginningm for the long chain can drop as fast a
the short one of the case of shorta. Eventually,m for the

FIG. 8. Functionm(t), see Eq.~30!, for a long and a short
chain, cases II and II8. m for the long chain reduces faster in th
beginning and eventually slower than for the short chain. Res
correspond to the average of 1000 trials.
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long chain must decay slower as seen in Fig. 10. The
that central beads have rapid jumps does not directly con
ute to the chain vacating initially occupied sites; the mov
ment of end beads are needed. In cases~a! of Fig. 10 then,
the reduction ofm with time is dictated by chain diffusion
and then viscosity exponents are expected to be directly
lated to those of diffusion~see case III in Table I!.

Short (b): pa1pb@pc and pa!pb . Most of the time the
chain is in configuration 1 and then^L&'3. Sincepb is large
compared topc , the chain stretches to the right and to t
left many times before eventually reaching configuration
While this happens,m is not affected. That is, the chain wi
be in configurations of cell 1 for a long time before passi
to configurations of a neighbor cell whenm reduces to 0.67.

Long (b): pa1pb@pc and pa@pb . Most of the time the
chain is in configuration 2 and then^L&'5. The chain starts
in configuration 2 and very rapidly contracts at the right a
left, reducingm to '0.6. This effect is clearly reflected in
Fig. 10~b!. The rapid initial reduction ofm is large enough so
that the viscosity of the long chain is smaller than that of
short case~see Fig. 7,N53), a result which is counterintui
tive within the framework of the original reptation mod
~note that the two chains have the same diffusion coe
cient!. In short, a chain spends a lot of time in cell 1 befo
adopting a configuration of cell 2. During this timem reduces
for a long chain while it is not affected for a short chain.

The above analysis shows that forpa1pb@pc an anoma-
lous relation between diffusion and viscosity can be fou
Short chains show larger viscosities while long chains sh
smaller viscosities than that which would emerge from
original reptation theory. Since this effect reduces withN, the
resulting discrepancy eventually disappears. As a result,
viscosity exponent can be larger or smaller than expecte

To check for the influence of length fluctuations, we to
chains of constant length equal to^L& and made their cente
of mass move as dictated by the center of mass of the ch

ts

FIG. 9. Evolution for short and long chains. Note that after
jump to the right, chains with configurations 1 and 2 adopt confi
rations 3; see Fig. 3. This implies a reduction in the number
occupied sites for the chain having initially configuration 2, but f
the chain initially with configuration 1m is not altered. When
chains eventually evolve to adopt another most probable config
tion, m reduces more for a short chain. Dashed lines show h
initially occupied sites are vacated.
4-8
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that follow our model dynamics during their diffusion. Th
resulting viscosities as a function ofN for cases I and I8 are
shown in Fig. 11. We present results for a range of lig
chains withN from 3 to 20 where the influence of fluctua
tions is more significant@see Eq.~9! and Ref.@12##. Since
fluctuations imply an extending and compressing chain w
diffusing, an acceleration of the stress relaxation is expec
Results for case I show this trend. However, case I8 shows
that for small values ofN viscosity is smaller for the chain
with rigid length.

This surprising result can be explained with the help
Fig. 3. Sincepa,pb , most of the time the chain is in con

FIG. 10. Functionm(t), see Eq.~30!, for long and short chains
cases III and III8 ~a!, and cases I and I8 ~b!. Note that for cases I and
I8, even though diffusivity is the same, the resulting value of v
cosity is larger for the short chain. Values ofm are the average o
1000 trials.
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figuration 1 and then̂ L&'3. When the chain evolves to
configuration 3 or 0,m is not affected despite its center-o
mass movements. Meanwhile,m reduces for a rigid chain
whose center of mass moves. Eventually for largeN’s the
effect of fluctuations vanishes and then the curves over
Thus, as a consequence of these details in chain dynamib
for the rigid chains can be larger or smaller than that for
chain with fluctuating length. Indeed, in case I length flu
tuations causeb to increase from 3.39 to 3.49, while in cas
I8 fluctuations causeb to decrease from 3.26 to 3.07.

V. CONCLUSIONS

We have analyzed in detail a computer model that sim
lates the diffusion of a chain of beads in one dimension.
found that the chain movements due to the dynamics of
beads and its relation to the dynamics of internal beads p
the key role. If the chain has the same probability of hopp
to the right or left in all possible configurations (pa1pb
5pc), its center of mass executes an ordinary random w
and diffusivity and viscosity exponents behave as expec
in the reptation model as originally introduced (a51, b
521a53). When beads do not have the same probabi
of hopping to the right or left (pa1pbÞpc), bead hops are
found to be correlated and diffusivity and viscosity exp

-

FIG. 11. Full symbols represent the viscosity for chains t
follow the rules of our model. Open symbols represent the visco
for chains of constant lengtĥL&, for which their centers of mass
move as dictated by the center of mass of chains that follow
model dynamics during diffusion. Note that as a consequenc
fluctuations the viscosity exponent can be larger or smaller dep
ing on the adopted parameters of the model.
4-9
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nents present unexpected values. Thus, the viscosity e
nent can be larger or smaller than 3 and fluctuations in
chain length can increase or reduce its value. Eventuall
all the studied cases, universality is recovered for la
enough values ofN, a converges to 1 andb to 3. Since
diffusivity is related to the long-term evolution of the cent
of mass of the chain, it is insensitive to some details of
chain movements. Conversely, viscosity is related to the t
sient process by which the chain abandons its original p
ys

ys
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tion. It should not surprise us to find that it depends on so
details of the model.
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